Tumor and Plasma Biomarker Analysis from the Randomized Controlled Phase 2 Trial of Tivantinib in Second-line Hepatocellular Carcinoma

Abstract # 197

Supported by: ArQule, Inc, and Daiichi-Sankyo

Presented by: Lorenza Rimassa, MD
Disclosures

• **Consulting or Advisory Role:**
 – Lilly
 – Merck Serono

• **Travel, Accommodations, Expenses** (to present accepted abstracts at conferences):
 – ArQule
Outline

Role of biomarkers in second-line hepatocellular carcinoma (HCC)

ARQ 197-215 Phase 2 randomized, placebo-controlled trial (RCT)
 • Circulating biomarkers (MET, HGF, AFP)
 • Tumor biomarker (MET)

ARQ 197-A-U303 (METIV-HCC) Phase 3 RCT
 • Tumor biomarker (MET)
Background

Sorafenib is the only approved systemic agent for advanced HCC

MET is the HGF tyrosine kinase receptor, involved in HCC progression and metastasis

Tivantinib (ARQ 197) is an oral, ATP-independent MET inhibitor active in MET-High patients in 4 RCT in HCC, NSCLC, CRC, CRPR\(^1\) - \(^4\)

ARQ 197-215, a multi-center, phase 2 RCT of tivantinib in 107 2\(^{nd}\) line HCC patients, met the primary endpoint of TTP in the ITT population and the pre-defined secondary efficacy endpoints in MET-High patients. Tumor MET was found to be prognostic\(^1\)

Exploratory endpoints included biomarkers correlation with efficacy endpoints

Presented by: Lorenza Rimassa, MD
Methods

Circulating MET, HGF, and AFP were centrally tested in serum (ELISA):

- MET and HGF were collected before the first dose on cycle 1 day 1, and post dose on day 1 of every cycle thereafter (q4 weeks)
- AFP was collected at screening and every 8 weeks thereafter

Median biomarker values were used as cut-offs to determine High or Low status except for AFP, where 75th percentile was also used.

Tumor MET was centrally analyzed after randomization and prior to un-blinding. Immunohistochemistry was performed with the Ventana SP-44 antibody. Strict criteria were used for MET-High status: $\geq 2+$ staining within $\geq 50\%$ of tumor cells.

Presented by: Lorenza Rimassa, MD
Patient characteristics were balanced between groups except for minor imbalances.

<table>
<thead>
<tr>
<th>Imbalanced Baseline Characteristics</th>
<th>Circulating</th>
<th>Tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MET (N=102)</td>
<td>HGF (N=102)</td>
</tr>
<tr>
<td>Vascular Invasion</td>
<td>29 (High)</td>
<td>41 (High)</td>
</tr>
<tr>
<td></td>
<td>35 (Low)</td>
<td>24 (Low)</td>
</tr>
<tr>
<td>HBV+</td>
<td>20 (High)</td>
<td>12 (High)</td>
</tr>
<tr>
<td></td>
<td>20 (Low)</td>
<td>28 (Low)</td>
</tr>
<tr>
<td>HCV+</td>
<td>57 (High)</td>
<td>47 (High)</td>
</tr>
<tr>
<td></td>
<td>33 (Low)</td>
<td>46 (Low)</td>
</tr>
</tbody>
</table>

In red, factors differing by ≥10% between High and Low subgroups; all other factors were well balanced.
Circulating MET as a Prognostic Factor

Baseline median circulating MET concentration: 13.26ng/mL (1.29-49.8ng/mL)

ITT Baseline N=102
- Median OS: Low (<median) 8.9 mos, High (≥median) 4.6 mos
- Patients: Low 51, High 51
- Events: Low 40, High 42
- HR: 0.61 (95% CI: 0.39-0.94) p=0.03

Placebo Baseline N=34
- Median OS: Low 9.4 mos, High 3.8 mos
- Patients: Low 19, High 15
- Events: Low 15, High 14
- HR: 0.42 (95% CI: 0.20-0.91) p=0.02

Trend in predictive value for circulating MET-High: tivantinib vs placebo HR: 0.55, p=0.07
(interaction test not significant)

Presented by: Lorenza Rimassa, MD
Circulating MET as a Pharmacodynamic Biomarker

Patients with best circulating MET reduction from baseline by ≥10% versus <10%

ITT: 12.3 mos in 37 pts ≥10%, 6.6 mos in 49 pts <10%, HR: 0.50 (95%CI: 0.30-0.83), p=0.006

<table>
<thead>
<tr>
<th></th>
<th>Tivantinib N=56</th>
<th>Placebo N=30</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥10%</td>
<td>13.3 mos</td>
<td>6.2 mos</td>
</tr>
<tr>
<td><10%</td>
<td>6.3 mos</td>
<td>7.9 mos</td>
</tr>
<tr>
<td>Patients</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>Events</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>HR: 0.46 (95% CI: 0.24-0.86) p=0.01</td>
<td>HR: 0.64 (95% CI: 0.28-1.49) p=0.3</td>
<td></td>
</tr>
</tbody>
</table>

Median best MET change in patients stable at 6 weeks: -37.9% on tivantinib, +18.4% on placebo

Presented by: Lorenza Rimassa, MD
Circulating HGF as a Prognostic Factor

Baseline median circulating HGF concentration: 2307 pg/mL (421-58080 pg/mL)

- **ITT Baseline N=102**
 - Low (<median): 9.0 mos, 51 patients, 36 events
 - High (≥median): 5.0 mos, 51 patients, 46 events
 - HR: 0.60 (95% CI: 0.39-0.94), p=0.02

- **ITT Best Change N=86**
 - ≥10%: 9.8 mos, 39 patients, 29 events
 - <10%: 6.5 mos, 47 patients, 38 events
 - HR: 0.60 (95% CI: 0.36-0.98), p=0.04

Results were overall confirmed when analyzed by treatment arm.
Circulating AFP as a Prognostic Factor

Baseline median: 186 (1.5-440008) IU/mL. Baseline 75th percentile (Q3): 3507.50 IU/mL

AFP <median vs AFP ≥median HR: 0.75 (95% CI: 0.48-1.15), p=0.18

No difference by best AFP change from baseline observed in 43 patients with AFP ≥20 IU/mL

Presented by: Lorenza Rimassa, MD
Baseline Tumor MET Status

H-score: percentage of cells staining per the intensity of the stain\(^1\)

<table>
<thead>
<tr>
<th>H-Score</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET-High Patients</td>
<td>175</td>
<td>120</td>
<td>300</td>
</tr>
<tr>
<td>MET-Low Patients</td>
<td>40</td>
<td>0</td>
<td>125</td>
</tr>
</tbody>
</table>

Tested samples (N=77) | 37 (48%)
Samples with available biopsy date (N=72) | 36 (50%)
Tumor samples taken before sorafenib (N=55) | 22 (40%)
Tumor samples taken after sorafenib (N=17) | 14 (82%)

Correlations: none between tumor MET, circulating MET, HGF; possible between AFP and tumor and circulating MET

\(^1\)Shi B, J Histochim Cytochem 2013

Presented by: Lorenza Rimassa, MD
Tumor MET as a Prognostic and Predictive Factor

<table>
<thead>
<tr>
<th></th>
<th>Median OS</th>
<th>Patients</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo MET-Low</td>
<td>9.0 mos</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Placebo MET-High</td>
<td>3.8 mos</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>HR: 0.34 (95% CI: 0.13-0.86) p=0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Median OS</th>
<th>Patients</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo MET-Low</td>
<td>9.0 mos</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Tivantinib MET-High</td>
<td>7.2 mos</td>
<td>22</td>
<td>17</td>
</tr>
<tr>
<td>HR: 0.72 (95% CI: 0.30-1.70) p=0.45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tivantinib vs placebo in 40 MET-Low patients: HR: 1.33 (95% CI: 0.58-3.04), p=0.50

Significant interaction test for tivantinib and tumor MET status in terms of OS (p=0.04)
Conclusions from ARQ 197-215

- Circulating MET, HGF, and AFP by 75th percentile hold a prognostic value

- Circulating MET is a pharmacodynamic biomarker for tivantinib

- Tumor MET is the only prognostic and predictive biomarker, and is more frequently “High” after sorafenib

- This analysis supports the use of tivantinib in MET-High patients only, and the rationale for the METIV-HCC study
METIV-HCC (ARQ 197-A-U303)*

Phase 3 clinical trial in the Americas, Australia, Europe, New Zealand

Approximately 303 adult pts with:
- MET-High, measurable HCC
- Child-Pugh A, ECOG PS 0-1, inoperable, progressed or intolerant to 1 prior therapy with sorafenib

2:1 Randomization

Oral Tivantinib 120mg BID
202 pts

Oral Placebo BID
101 pts

Overall Survival

Eligibility and IHC criteria comparable to the ARQ 197-215 phase 2 RCT (except METIV-HCC selected MET-High patients only). Accrual completed in December 2015

*Data are preliminary, from non-cleaned database, from biopsied patients regardless of their enrolment status

NCT01755767

Presented by: Lorenza Rimassa, MD
METIV-HCC: Baseline Tumor MET Status*

<table>
<thead>
<tr>
<th>H-Score</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET-High Patients</td>
<td>170</td>
<td>120</td>
<td>300</td>
</tr>
<tr>
<td>MET-Low Patients</td>
<td>90</td>
<td>0</td>
<td>180</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Samples Description</th>
<th>Tested samples (N=1138)</th>
<th>Samples with available biopsy date (N=925)</th>
<th>Tumor samples taken before sorafenib (N=438)</th>
<th>Tumor samples taken after sorafenib (N=487)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>576 (51%)</td>
<td>527 (57%)</td>
<td>173 (39%)</td>
<td>354 (73%)</td>
</tr>
</tbody>
</table>

*Data are preliminary, from non-cleaned database, from biopsied patients regardless of their enrolment status.

Presented by: Lorenza Rimassa, MD
METIV-HCC: Baseline Tumor MET Status*

MET-Low to MET-High Conversion:
71 patients were MET-Low at biopsy taken before sorafenib and were re-biopsied after sorafenib
50 out of 71 (70%) converted to MET-High at the biopsy taken after sorafenib

*Data are preliminary, from non-cleaned database, from biopsied patients regardless of their enrolment status
The only correlation found is between High MET status and prior treatment with sorafenib (p<0.0001)

No correlation found between MET status and:

- time on sorafenib
- reason for sorafenib discontinuation
- time between last sorafenib dose and biopsy
- time between diagnosis and biopsy
- prior local therapies

*Data are preliminary, from non-cleaned database, from biopsied patients regardless of their enrolment status
Conclusions

Tumor MET results are comparable in both ARQ 197-215 and METIV-HCC studies with tivantinib in second-line HCC

Strict criteria can make MET immunohistochemistry reliable across studies

Tumor MET status is more frequently (70-80%) “High” after sorafenib as the biological features of the tumor become more aggressive

Baseline tumor biomarker analysis from the ongoing phase 3 trial confirms biomarker analysis results from phase 2

The METIV-HCC trial will validate the role of the analyzed biomarkers in HCC
WE THANK THE PATIENTS, THEIR FAMILIES, AND THE INVESTIGATORS

Humanitas Cancer Center, Rozzano, Milan, Italy (A Santoro, L Rimassa, N Personeni)
Humanitas University, Rozzano, Milan, Italy (A Santoro); University of Milan, Italy (N Personeni)
Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERehd, Spain (J Bruix)

Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (C Porta)
Cliniques Universitaires Saint-Luc, Brussels, Belgium (I Borbath)
G Rummo Hospital, Benevento, Italy (B Daniele)
Erasme University Hospital, Brussels, Belgium (JL Van Laethem)
Ghent University Hospital, Belgium (H Van Vlierberghe)
J W Goethe-University Hospital, Frankfurt, Germany (J Trojan)
Klinikum der Universitaet Muenchen-Grosshadern, Munich, Germany (EN De Toni)
Universitaet Wien, Gastroenterologie und Hepatologie, Vienna, Austria (M Peck-Radosavljevic)

Department of Medicine, Hematology/Oncology, Geffen School of Medicine at University of California, Los Angeles, CA, USA (R Finn)
Paoli-Calmettes Institute, Marseille, France (JL Raoul)
Georgetown University Hospital, Lombardi Comprehensive Cancer Center; Washington, DC, USA (AR He)
Daiichi Sankyo, Edison, NJ, USA (R Von Roemeling)
ArQule, Burlington, MA, USA (G Abbadessa, B Schwartz, ME Lamar, Y Wang)